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Preface

Why a cell biology textbook? What is its value in a world of online resources  
so vast that any information you might want about cells is, in principle, freely 
available a few taps away? 

The answer is that a textbook provides what open-ended Internet searches 
cannot—a curation of knowledge and an expert, accurate guide to the beauty 
and complexities of cells. Our book provides a narrative that leads the reader log-
ically and progressively through the key concepts, components, and experiments 
in such a way that readers can build for themselves a memorable, conceptual 
framework for cell biology—a framework that will allow them to understand and 
critically evaluate the exciting rush of new discoveries. That is what we have tried 
to do in Molecular Biology of the Cell for each of its seven editions.

This edition was completed during the COVID-19 pandemic. Many of the 
questions that this global crisis generated are cell biological questions—including  
how the virus gets into our cells, how it replicates, how our immune system 
responds, how vaccines are developed, and how scientists produce the molecular 
details of virus structure. Required for the rapid development of safe and effective 
COVID-19 vaccines, answers to all of these questions can be found in this text-
book. To make room for them, as well as for many other major recent advances in 
our knowledge, much previous content had to be removed.

Understanding the inner workings of cells requires more than words. Our 
book contains more than 1500 illustrations that create a parallel narrative, closely 
interwoven with the text. Each figure has been designed to highlight a key con-
cept. The unique clarity, simplicity, and consistency of the figures across chapters, 
achieved by use of a common set of icon designs and colors (for example, DNA red 
and proteins green), enables students to scan them as chapter overviews. In this 
edition, important protein structures are depicted and their Protein Data Bank 
(PDB) codes provided; these codes link to tools on the RCSB PDB website (www 
.rcsb.org), where students can more fully explore the proteins that lie at the core of 
cell biology. In addition, more than 180 narrated movies have been produced for 
the book, each linked to the text to provide additional insights. 

John Wilson and Tim Hunt have again contributed their distinctive and imagi-
native problems to help students gain a more active understanding of the text. The 
end-of-chapter problems emphasize experiments and quantitative approaches 
in order to encourage critical thinking. Their Digital Problems Book in Smartwork 
greatly expands on these self-assessment problems and includes data analysis 
and video review questions that are based on the movie links in the textbook. 

Many millions of scientific papers are relevant to cell biology, and many import-
ant new ones are published daily. The challenge for textbook writers is to sort 
through this overwhelming wealth of information to produce a clear and accurate 
conceptual platform for understanding how cells work. We have aimed high, seeking 
primarily to support the education of cell biology students, including the next gener-
ation of bioscientists, but also to support active scientists pursuing new fundamental 
research and the search for practical advances to improve the human condition. 

So, why read a textbook? We live in a world that presents humanity with many 
challenging problems related to cell biology, including declining biodiversity, 
climate change, food insecurity, environmental degradation, resource depletion, 
and animal and plant diseases. We hope that this new edition of our textbook  
will help the reader to better understand these problems and—for many—to  
contribute to solving them. 

         v
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vi	

What’s New in the Seventh Edition?
Every chapter in the Seventh Edition has been significantly updated with informa-
tion on new discoveries in the field of cell biology. Examples of this new content 
include:

•	 Updated information on the continuing impact of human genome research, 
including what has been learned from sequencing hundreds of thousands  
of human genomes (Chapter 4), and updated coverage of tumor genomes 
(Chapter 20).

•	 New research on pathogens, diseases, and methods of combating them, 
including discussion of COVID-19 (Chapters 1, 5, and 23) and mRNA vaccines 
(Chapter 24).

•	 Updated research on cellular organization, including new information on 
biomolecular condensates (Chapters 3, 6, 7, 12, and 14) and on chromosome 
organization by DNA loop extrusion (Chapters 4, 7, and 17).

•	 Expanded coverage of new microscope technologies, including superresolu-
tion light microscopy and atomic resolution electron microscopy (Chapter 9),  
and new research breakthroughs from cryo-electron microscopy, such as 
stretch-activated Piezo channels (Chapter 11).

•	 New coverage of evolution, including a new discussion on the diversity of life 
(Chapter 1), plus updates on both human (Chapter 4) and HIV (Chapter 23) 
evolution.

In addition, a quarter of the book’s illustrations are either completely new or  
significantly updated for accuracy, clarity, and visual appeal.

Finally, we are thrilled to offer online assessment, for the first time, with the 
Digital Problems Book in Smartwork—reimagining the classic companion text, 
The Problems Book, for twenty-first century instructors and students. 

Structure of the Book
Although the chapters of this book can be read independently of one another, they 
are arranged in a logical sequence of five parts. The first three chapters of Part I 
cover elementary principles and basic biochemistry. They can serve either as an 
introduction for those who have not studied biochemistry or as a refresher course 
for those who have. Part II deals with the storage, expression, and transmission 
of genetic information. Part III presents the principles of the main experimental 
methods for investigating and analyzing cells; here, a section titled “Mathematical  
Analysis of Cell Function” in Chapter 8 provides an extra dimension in our under-
standing of cell regulation and function. Part IV describes the internal organization 
of the cell. Part V follows the behavior of cells in multicellular systems, starting 
with how cells become attached to each other and concluding with chapters on 
pathogens and infection and on the innate and adaptive immune systems.

End-of-Chapter Problems
A selection of problems, written by John Wilson and Tim Hunt, appears in the 
text at the end of each chapter. Solutions to these problems are available on the 
Norton Teaching Tools site. 

Note to the Reader
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References
A concise list of selected references is included at the end of each chapter. These 
are arranged in alphabetical order by author surname under the main chapter 
section headings. These references often include the original papers in which 
the most critical discoveries were first reported. The ebook also includes the DOI 
identifier for the references, making it easy for students to access the articles. 

Glossary Terms
Throughout the book, boldface type has been used to highlight key terms at the 
point in a chapter where the main discussion occurs. Italic type is used to set off 
important terms with a lesser degree of emphasis. At the end of the book is an 
expanded glossary, covering all the major terms common to cell biology; it should 
be the first resort for a reader who encounters an unfamiliar technical word. 

Website for Students
Resources for students are available at digital.wwnorton.com/mboc7. The com-
plete glossary as well as a set of flashcards are available on this student website.

	 	 Note to the Reader    vii
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viii	

Each species has its own conventions for naming genes; the only common  
feature is that they are always set in italics. In some species (such as humans), 
gene names are spelled out all in capital letters; in other species (such as  
zebrafish), all in lowercase; in yet others (most mouse genes), with the first letter  
in uppercase and the rest in lowercase; or (as in Drosophila) with different  
combinations of uppercase and lowercase, according to whether the first mutant 
allele to be discovered produced a dominant or recessive phenotype. Conven-
tions for naming protein products are equally varied.

This typographical chaos drives everyone crazy. Moreover, there are many 
occasions, especially in a book such as this, where we need to refer to a gene 
generically—without specifying the mouse version, the human version, the 
chick version, or the hippopotamus version—because the gene variants across  
species are all equivalent for the purposes of our discussion. What convention 
then should we use?

We have decided in this book to follow a uniform rule. We write all gene names 
with the first letter in uppercase and the rest in lowercase, and all in italics, thus: 
Bazooka, Cdc2, Dishevelled, Egl1. The corresponding protein, where it is named 
after the gene, will be written in the same way, but in roman rather than italic 
letters: Bazooka, Cdc2, Dishevelled, Egl1. When it is necessary to specify the 
organism, this can be done with a prefix to the gene name.

For completeness, we list a few further details of naming rules that we shall 
follow. In some instances, an added letter in the gene name is traditionally used 
to distinguish between genes that are related by function or evolution; for those 
genes, we put that letter in uppercase if it is usual to do so (LacZ, RecA, HoxA4). 
Proteins are more of a problem. Many of them have names in their own right, 
assigned to them before the gene was named. Such protein names take many 
forms, although most of them traditionally begin with a lowercase letter (actin, 
hemoglobin, catalase); others are acronyms (such as GFP, for green fluorescent 
protein, or BMP4, for bone morphogenetic protein 4). To force all such protein 
names into a uniform style would do too much violence to established usages, 
and we shall simply write them in the traditional way. For the corresponding gene 
names in all these cases, we shall nevertheless follow our standard rule: Actin, 
Hemoglobin, Catalase, Bmp4, Gfp.

For those who wish to know them, the table shows some of the official con-
ventions for individual species—conventions that we shall mostly violate in this 
book, in the manner shown.

Nomenclature for Genes 
and Proteins
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Organism

Species-specific convention Unified convention used in this book

Gene Protein Gene Protein

Mouse Hoxa4 Hoxa4 HoxA4 HoxA4

Bmp4 BMP4 Bmp4 BMP4

integrin a-1, Itga1 integrin α1 Integrin a1, Itga1 integrin α1

Human HOXA4 HOXA4 HoxA4 HoxA4

Zebrafish cyclops, cyc Cyclops, Cyc Cyclops, Cyc Cyclops, Cyc

Caenorhabditis unc-6 UNC-6 Unc6 Unc6

Drosophila sevenless, sev (named 
after recessive phenotype)

Sevenless, SEV Sevenless, Sev Sevenless, Sev

Deformed, Dfd (named 
after dominant mutant 
phenotype)

Deformed, DFD Deformed, Dfd Deformed, Dfd

Yeast

   Saccharomyces cerevisiae
   (budding yeast)

CDC28 Cdc28, Cdc28p Cdc28 Cdc28

   Schizosaccharomyces 
   pombe (fission yeast)

Cdc2 Cdc2, Cdc2p Cdc2 Cdc2

Arabidopsis GAI GAI Gai GAI

Escherichia coli uvrA UvrA UvrA UvrA

	 	 Nomenclature for Genes and Proteins    ix
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	 	 Resources for Instructors    xix	

digital.wwnorton.com/mboc7
Designed to enrich the classroom experience, Instructor Resources are available 
at digital.wwnorton.com/mboc7. Adopting instructors can obtain access to the 
site from their sales representative, who can be identified by visiting wwnorton 
.com/educator and clicking the “Find My Rep” button.  

The Digital Problems Book in Smartwork
For the first time, the popular print supplement Molecular Biology of the Cell: 
The Problems Book is now available in Smartwork. Easier for instructors to assign 
and more helpful to students because of each question’s pedagogical scaffolding, 
the Digital Problems Book in Smartwork features the questions authored by Tim 
Hunt and John Wilson adapted for digital delivery. An enormous library of almost 
3500 questions that include critical thinking questions, data analysis questions,  
and animation and video questions, allows instructors to deliver the exact type 
of assessment that their students need. The Digital Problems Book in Smartwork 
comes at no additional cost with all new copies of Molecular Biology of the Cell. 

Resources for Instructors
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	 	 Resources for Instructors    xi

Norton Teaching Tools 
The Norton Teaching Tools site for Molecular Biology of the Cell provides creative 
and engaging resources to refresh a syllabus or to design a new one. Dynamic, 
experienced instructors have created primary literature suggestions, active learn-
ing activities, lecture PowerPoint files, descriptions of all of the animations and 
videos, and much more. All of the teaching tools are aligned with chapter topics 
and organized by activity type, making it easily sortable. The site also features tips 
for assigning Norton’s digital learning tools and addressing the most common 
course challenges.

Animations and Videos
Under the authorial direction of Michele M. McDonough and Thomas A. Volpe, 
both of Northwestern University, the animations and video library has been  
thoroughly updated and expanded. The more than 180 animations and videos are 
integrated into the ebook and also available to students and instructors at digital 
.wwnorton.com/mboc7. Instructors can view descriptions of each on the Norton 
Teaching Tools site. 

Norton Ebook
The purchase of any new print copy of the Seventh Edition of Molecular Biology 
of the Cell includes access to the Norton Ebook version of the text at no additional 
cost. The Norton Ebook can be purchased as an affordable stand-alone option 
that provides an active reading experience, enabling students to take notes, book-
mark, search, highlight, and read offline. All of the videos and animations appear 
directly in the ebook, and instructors can add notes that students can see as they 
are reading the text. 

Art of Molecular Biology of the Cell, Seventh Edition
The images from the book are available in two convenient formats: PowerPoint 
and JPEG, and in both labeled and unlabeled versions.

Figure-integrated Lecture Outlines
The section headings, concept headings, and figures from the text have been inte-
grated into PowerPoint presentations and can be customized. For example, the 
content of these presentations can be combined with videos, questions from the 
book, or activities in the Norton Teaching Tools site, in order to create unique 
lectures that facilitate interactive learning.

Test Bank
Updated for the Seventh Edition, the test bank includes a variety of question for-
mats: multiple choice, short answer, fill-in-the-blank, true–false, and matching. 
The test bank was created with the philosophy that a good exam should require 
students to reflect upon and integrate information as a part of a sound understand-
ing. Questions are classified by section and difficulty, making it easy to construct 
tests and quizzes. The test bank question library includes about 70 questions per 
chapter, ensuring instructors can find the right questions for their exams. It will 
be delivered through Norton Testmaker, which brings the high-quality questions 
in the test bank online. Create assessments for your course without downloading 
files or installing specialized software, customize test bank questions, and easily 
export your tests to Microsoft Word or Common Cartridge files for your learning 
management system (LMS).
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The surface of our planet is populated by living things—organisms—curious, 
intricately organized chemical factories that take in matter from their sur-
roundings and use these raw materials to generate copies of themselves. These 
organisms appear extraordinarily diverse. What could be more different than a 
tiger and a piece of seaweed or a butterfly and a tree? Yet our ancestors, knowing 
nothing of cells or DNA, saw that all these things had something in common. 
They called that something “life,” marveled at it, struggled to define it, and 
despaired of explaining what it was or how it worked in terms that relate to non-
living matter.

The remarkable discoveries of the past 100 years or so have not diminished the 
marvel—quite the contrary. But they have removed the central mystery regarding 
the nature of life. We can now see that all living things are made of cells: small, 
membrane-enclosed units filled with a concentrated aqueous solution of chemi-
cals and endowed with the extraordinary ability to create copies of themselves by 
growing and then dividing in two.

Because cells are the fundamental units of life, it is to cell biology—the study 
of the structure, function, and behavior of cells—that we must look for answers 
to the questions of what life is and how it works. With a deeper understand-
ing of cells and their evolution, we can begin to tackle the grand historical 
problems of life on Earth: its mysterious origins, its stunning diversity, and 
its invasion of every conceivable habitat. Indeed, as emphasized long ago by 
the pioneering cell biologist E. B. Wilson, “the key to every biological problem 
must finally be sought in the cell; for every living organism is, or at some time 
has been, a cell.”

Despite their apparent diversity, living things are fundamentally similar 
inside. The whole of biology is thus a counterpoint between two themes: aston-
ishing variety in individual particulars and astonishing constancy in fundamental 
mechanisms. In this chapter, we begin by outlining the universal features com-
mon to all life on our planet, along with some of the fundamental properties of 
their cells. We then discuss how an analysis of DNA genomes allows scientists 
to position the wide variety of organisms in an evolutionary “tree of life.” This 
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